Sufficient oxygen for animal respiration 1,400 million years ago.

نویسندگان

  • Shuichang Zhang
  • Xiaomei Wang
  • Huajian Wang
  • Christian J Bjerrum
  • Emma U Hammarlund
  • M Mafalda Costa
  • James N Connelly
  • Baomin Zhang
  • Jin Su
  • Donald E Canfield
چکیده

The Mesoproterozoic Eon [1,600-1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon-oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life.

Because animals require oxygen, an increase in late-Neoproterozoic oxygen concentrations has been suggested as a stimulus for their evolution. The iron content of deep-sea sediments shows that the deep ocean was anoxic and ferruginous before and during the Gaskiers glaciation 580 million years ago and that it became oxic afterward. The first known members of the Ediacara biota arose shortly aft...

متن کامل

The cycling and redox state of nitrogen in the Archaean ocean

Organisms that produce oxygen through photosynthesis existed during the late Archaean eon, about 2,500 million years ago, but controversial evidence suggests that they may have evolved several hundred million years earlier. Oxygen is expected to react with oceanic nitrogen, altering its redox state. The reaction leaves a signature in the isotopic composition of the nitrogen bound in organic mat...

متن کامل

No evidence for high atmospheric oxygen levels 1,400 million years ago.

Zhang et al. (1) recently proposed atmospheric oxygen levels of ∼4% present atmospheric levels (PAL) based on modeling a paleoenvironment reconstructed from tracemetal and biomarker data from the 1,400Ma Xiamaling Formation in China. Intriguingly, this pO2 level is above the threshold oxygen requirements of basal animals and clashes with evidence for atmospheric oxygen levels<<1% PAL in the mid...

متن کامل

Oxygen requirements of the earliest animals.

A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earth's surface environment failed to meet the high oxygen requirements of animals up until the middle to late Neoproterozoic Era (850-542 million years ago), when oxygen concentrations sufficiently rose to per...

متن کامل

Origin of the metazoan phyla: molecular clocks confirm paleontological estimates.

The time of origin of the animal phyla is controversial. Abundant fossils from the major animal phyla are found in the Cambrian, starting 544 million years ago. Many paleontologists hold that these phyla originated in the late Neoproterozoic, during the 160 million years preceding the Cambrian fossil explosion. We have analyzed 18 protein-coding gene loci and estimated that protostomes (arthrop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 7  شماره 

صفحات  -

تاریخ انتشار 2016